
Clean Architecture



Introduction

Name: Christian Wrobel

Job Role: Lead Architect & Team Lead at EnBW

Skills / Tech Stack: 

- Software Architecture: Applying architecture methods such as Quality Storming, Risk 

Analysis, and Architecture Evaluation to design scalable and maintainable systems

- Domain Driven Design: Creating business-focused and adaptable software solutions

- Software Engineering: Developing distributed, cloud-native systems using .NET and Java



Disclaimer

When it comes to building software architecture, there 
are no definitive ‘right’ or ‘wrong’ solutions. Likewise, 
there is no silver bullet - a solution with only 
advantages and no downsides. Every software 
architecture decision involves trade-offs and should be 
based on functional and non-functional requirements, 
such as quality scenarios

The architecture I will present is just one of many ways 
to implement a clean architecture in a large, distributed 
enterprise environment. While some aspects might also 
work in other environments, others may need to be 
adapted to better suit specific requirements.



Business-Driven Architecture in Bounded Contexts

Many developers understand the importance of having a strategic architecture. 

Domain-Driven Design and identifying the right Bounded Context are widely 
recognized and applied. 

However, within a bounded context, establishing a well-modularized, 
business-driven architecture is equally essential.



Typical Architecture Landscape

Order Context

Service 1 Service 2

Entity 1 Entity 2

…

…

Billing Context



Unstructured Bounded Context

Order ContextIn an unstructured Bounded Context, there is 
no clear organization for business-driven 
modules.

This design tend to become a big ball of mud.

Sometimes, the architectural boundaries of a 
Bounded Context may need to be redefined. 
Without an encapsulated architecture, it 
becomes challenging to move modules to a 
different Bounded Context.

A Bounded Context may have poor testability if 
its design lacks proper structure and 
modularity.



Domain Driven Bounded Context

It’s essential to implement a business-driven design 
within a Bounded Context.

Domain-Driven Design helps structure a Bounded 
Context into well-defined business modules.

The domain layer of a Bounded Context is 
organized into Aggregates, where each Aggregate 
serves as a Unit of Work and can contain multiple 
Domain Entities and Value Objects.

The Entities represent the current state of an 
Aggregate and implement their own business logic.

Order Context Domain Layer

Stock 
Entity

Article 
Entity

Order 
Entity

Order 
Aggregate

Stock Aggregate



Communication between Aggregates

Aggregates are loosely coupled and 
communicate with each other through 
Domain Events.

Domain Events exist within the 
transaction scope of a Bounded 
Context.

Several libraries, such as MediatR in 
.NET and Spring Boot in Java, provide 
support for Domain Events.

Order Context Domain Layer

Order 
Aggregate

Stock 
Aggregate



Application Layer

The Application layer is responsible for 
exposing APIs to the outside world, 
such as RESTful APIs or handlers for 
Integration Events.

To protect incoming and outgoing 
communication from breaking changes, 
the Application Layer manages tasks 
such as API contract versioning and 
mapping them to the internal Domain 
Layer.

API’s

View Models

Request Models

Integration events



Code Example - Commands

Command API

Event Listener

Domain AggregateRepository

Domain Event

Dependency

The Command API is loosely coupled through Domain 
Events

The event listener orchestrates Domain Aggregates with 
their Repositories

This design is flexible: the Event Listener, Repository, and 
Domain Aggregate can be moved to other bounded 
contexts and used with different protocols, like AMQP 
integration events instead of a HTTP command API

The business logic is well encapsulated within the 
Aggregates

An Aggregate can contain multiple Domain Entities and 
Value Objects.



Infrastructure Layer

The Infrastructure Layer is responsible 
for infrastructure tasks such as loading 
and persisting data, publishing 
integration events, and handling logging 
and monitoring.



Lightweight Onion Architecture

Domain

Application

Infrastructure



Code Example - Views

View API

View Model Domain 
AggregateRepository

The View API loads domain aggregates and maps them to view 
models

Multiple repositories and aggregates can be combined into a 
single view model, depending on the requirements of the View 
API 

From a modularization perspective, this approach makes sense 
when the read database is separated from the write database 
(see CAP theorem for advantages and disadvantages)

Even when the databases are not split, this design can serve as 
a good foundation and is flexible for future database separation 
if needed

The API and View Model are versioned. The API controller maps 
the current domain model to its corresponding version of View 
Models



Example Usecase

1. Customer make order
2. Stock get reduced with ordered articles

Create Order Reduce Stock

Order Aggregate Stock Aggregate
Order Article ArticleOrdered



Code Example

Open

https://github.com/jknowledge/cleanarchitecture
https://github.com/jknowledge/cleanarchitecture


Testing Strategy

Within a Bounded Context, Unit and 
Integration tests are commonly 
effective.

Tests spanning multiple Bounded 
Contexts should be avoided, as they 
risk creating a shared monolith. Instead, 
contract-driven testing or the use of 
mocks are better alternatives.

Order Context

Isolated Scope

Integration Tests

Unit Tests

Billing Context

Isolated Scope

Integration Tests

Unit Tests

Contract Driven / Mocks



Clean Testing Architecture

For better maintainability and 
readability, test data should be 
structured using personas. 

The builder pattern can be used to 
create these personas, which can then 
be reused across multiple test cases. 

Ideally, personas should be defined and 
utilized in the requirements, such as 
user stories.

Name Mickey Mouse

Address Main Street 1, 
12345 Disneyland

Age 96

Role Iconic Cartoon Character / 
Entertainer



Code Example

Open

https://github.com/jknowledge/cleanarchitecture/blob/main/src/main/java/de/jknowledge/cleanarchitecture/domain/aggregate/order/OrderEntityTestDataBuilder.java
https://github.com/jknowledge/cleanarchitecture/blob/main/src/main/java/de/jknowledge/cleanarchitecture/domain/aggregate/order/OrderEntityTestDataBuilder.java


Creating the Domain Model

A great starting point is event storming. 
These sessions, ideally conducted 
cross-functionally with business 
stakeholders, help identify key business 
events and shape aggregates, entities, 
and value objects, forming the foundation 
for software architecture. For larger 
changes, it’s beneficial to repeat these 
sessions iteratively, as new requirements 
lead to evolving business events and 
refined domain models.



Common Pitfalls and Bad Practices to Avoid
Reading Data from a Domain Model:

To read data, aggregations often span multiple aggregates. Instead of coupling aggregates, it's better to use view models. For scalability and 
performance, separating the write and read databases can be beneficial if eventual consistency is acceptable.

Aggregates can become too large:

A common pitfall in a bounded context is when an aggregate grows too large, leading to a tangled, unmanageable structure. Aggregates 
should be designed around meaningful business events, not just in a static manner.

Stop working on the domain model:

In the early phase of new projects, teams often collaborate cross-functionally to design the initial version of the domain model. However, as 
they move on to develop additional features, they frequently stop refining the model. This is often the point where the software design begins 
to weaken.



Trade-offs

Readability of Code: 

In event-driven, modular software, a trade-off is the complexity of following logic 
paths, as they are distributed across multiple modules and connected only by 
domain-driven events.

Domain Driven Design: 

Teams often face challenges designing event-driven domain models and 
identifying the correct domain boundaries.



Architecture Testing

To protect architectural principles, it's 
useful to test them with Fitness 
Functions. 

Frameworks like ArchUnit and 
ArchUnitNET can assist in testing the 
software architecture.

Fitness Function Examples:

➔ Testing layers with allowed and not 
allowed access

➔ Verify that each aggregate has no 
dependencies on other aggregates

➔ Test naming conventions for classes 
should follow consistent patterns, such as 
ensuring all repository classes end with 
*Repository

➔ Test the size of an aggregate to prevent it 
from becoming too large

➔ An event listener references at most one 
repository to maintain high cohesion

https://www.archunit.org
https://archunitnet.readthedocs.io


Feedback

https://www.menti.com/altab34p5r9o



Contact and Further Informations

Blog:

www.jknowledge.de

Github: 
https://github.com/jknowledge

http://www.jknowledge.de
https://github.com/jknowledge

