Sound of Scheduling

Writing Linux Schedulers in Java

Johannes Bechberger
David Kiefer

timetableworld.com

https://mostlynerdless.de/blog/2013/12/08/real-life-practice-in-lottery-scheduling/

CPU 1 CPU 2

Time

Time

Time

Time

Time

Time

Time

Time

" Hear this sound?

ooz
74
74

It's my scheduler

Why??

“ The only way of disco-
vering the limits of the
possible is to venture

a little way past them
Into the impossible.

Clarke’s second law

https://www.flickr.com/photos/itupictures/16636142906

CoONTAINS
SHoOT cLUSTER’S

[conmoL PLANE]
RS woekLosD

NHZACT

(@ ANTHEATUNG

AN EXTENDED A SERVICE TO MMIAGE

NI SFRVER & L NPGE-SPLE KUBERNETES
KUBERNETES CONTROLLERY —

THAT DERNEC AND M ERNETES
nEy MR D e ke
s s < é PTM](.P

o0

INFRASTRICTURE

How to modify
the kernel?

Traditional ways

1.Change the Kernel
2.Kernel module

Traditional ways

d
1.Change the Kerpgd coms ™

1nierie

2.Kernel module

Traditional ways

1.Change the Kernel
2.Kernel moduls, coneauier

Problem: Only a few are
implemented on your system

CFS was built in a simpler time Just one L3 cache

- Much smaller CPUs

- Topologies much more
homogeneous

- Cores spaced further apart,
migration cost typically high

- Power consumption and die area
wasn’t as important

- The fundamental assumptions
behind heuristics may be easier

to justify

Just two cores

Intel Xeon MP 71xx die

David Vernet, https://archives.kernel-recipes.org/wp-content/uploads/2025/01/Sched_Ext.pdf

Architectures much more complicated now

- Heterogeneity is becoming the norm

- Non-uniform memory accesses between sockets 32MB UNIFIED L3 CACHE BENEFITS

- Non-uniform memory accesses between CCDs

- Non-uniform memory accesses between CCXs = T ————
- Non-uniform memory accesses between CCXs in the . R
“ »
g Eg:g: gg: “gg)[gn AMD Zen 2 Rome
8 cores per “CCX”
2 L3 caches per CCD! 8 cores per “CCD” -

1L3 cache per CCD!

David Vernet, https://archives.kernel-recipes.org/wp-content/uploads/2025/01/Sched_Ext.pdf

| et's create our own

| et's create our own

Has someone done this before in this room?

| et's create our own

How hard can it be?

| et's create our own

& - Ik

Who was there in the
Firewall Talk™

Skip ahead

“ eBPF is a crazy
technology, it’s like
putting JavaScript into
the Linux kernel

Brendan Gregg

https://youtu.be/tDacjrSCeq4?t=43

“ eBPF is a crazy
technology, it’s like
putting JavaScript into
the Linux kernel

Brendan Gregg

https://www.facesofopensource.com/brendan-gregg/

https://ebpf.io/what-is-ebpf/

User space

Linux Kernel

Hardware

Process

A

write() read()

sendmsg()

recvmsg()

Syscall ! Syscall !g
Y \/ L
File Descriptor Sockets

= N o
Block Device Network Device

& ! % ‘
\J A4

Storage Network

2 e
2o eBPF Compilation of A eBPF
program > program

| S

eBPF runtime

Development

Courtesy of Mohammed Aboullaite

c 2
GE) (0600 eooée
eBPF runtime 25| & eBPF Compilation oA eBPF
[| program - program
> | —
O
()
bpf Syscall

|

C Verifier)

Linux Kernel

Courtesy of Mohammed Aboullaite

User Land

Linux Kernel

Development

| eBPF Compilation

2 eBPF

program > program
Application |
Processes
\4
bpf Syscall
Syscalls

(Sockets

@etwork Interfaﬁ<~

program

JIT Compiler

(Verifier)

Courtesy of Mohammed Aboullaite

How to share data?

via sockets:

Program A

Data(uid=0,
gid=0,
counter=10)

sendMessage (-)

via shared memory:

Program A

»

Data(uid=0,

Program B

et gid=0, . _Set
,3”"' counter=10) T~

Program B

https://mostlynerdless.de/blog/2024/01/12/hello-ebpf-recording-data-in-basic-ebpf-maps-2/

How to share data?

via sockets:

Data(uid=0,
gid=0,

counter=10)

Program A

via shared memory:

‘ sendMessage (

|
Any Problems®

Program A

Data(uid=0,
Set gld=0,
counter=10)

get

Drogram B

Program B

https://mostlynerdless.de/blog/2024/01/12/hello-ebpf-recording-data-in-basic-ebpf-maps-2/

How to share data?

via eBPF maps:

eBPF Program

BPF Map

set entry

Data(uid=0,
gid=0,

*‘

counter=10)

entry

&
P

et entry

Userland Program

https://mostlynerdless.de/blog/2024/01/12/hello-ebpf-recording-data-in-basic-ebpf-maps-2/

eBPF Maps

©
&
- Application eBPF
@ Processes Application
D l T
bpf Syscall
Syscalls
©
= C >
@ (Sockets — -
it Maps
= @etwork Interfa
N— e

Courtesy of Mohammed Aboullaite

https://www.youtube.com/watch?v=X3AWV5IJ6RY

https://www.youtube.com/watch?v=X3AWV5IJ6RY

Demo

XDP

Application

Java eBPF Application X

Userland a
B — g._ — :_g. _______________
Kernel § S
o]
Y @7 Linux Network Stack
eBPF Program
Cé@)
% Network Driver

https://mostlynerdless.de/blog/2024/04/22/hello-ebpf-xdp-based-packet-filter-9

XDP

Application

Linux
Network
Stack

Network Interface

Back to scheduling

sched_ext

Sched Ext

The extensible sched_class

David Vernet

Kernel engineer 00 MetCI

Kernel Recipes 2023 - sched ext: pluggable scheduling in the Linux kernel

https://www.youtube.com/watch?v=8kAcnNVSAdI

€6

1.Ease of experimentation
and exploration

2.Customization

3.Rapid scheduler
deployments

Typical Scheduler Goals

Fairness

Typical Scheduler Goals

Resource
Utilization

Typical Scheduler Goals

Overhead

Typical Scheduler Goals

Responsiveness

120 FPS (0-121)
hash #A2-6a52066d@6 . 44 ll
pos 2969.8, 159.9, 9272.7

MIDLINE
vehicle index 644
head 624
tail 3144
PERFORMANCE
view dist 4
detail 4
fps 120
draw calls 109
triangles 1983117.3333333335
geometries 112
QUEUE
jobs 0

priority jobs

KILOMETERS

b

sched_ext

NeBPF fello ecBPF

| et's create
a scheduler

@BPF(license = "GPL")

abstract class SampleScheduler
extends BPFProgram
implements Scheduler, Runnable {

Process Name Enqueue Count

ForkJoinPool.
ForkJoinPool.
ForkJoinPool.
ForkJoinPool.
ForkJoinPool.
ForkJoinPool.
ForkJoinPool.
ForkJoinPool.
ForkJoinPool.

What is the performance?

Good”

* For a ypical Java benchmark

How does it work?

Kernel land User land

Hardware

hello BPF

Java Code

—

C Code

attach

Byte Code

/

Loaded

| et’s see some
schedulers

First-Come, First-Served Scheduler

Run as long as you want,
we won't stop you

Time

Time

Making errors is normal

/**
@timeout_ms: The maximum amount of time, 1n milliseconds, that a

runnable task should be able to wait before being scheduled. The

*
*
* maximum timeout may not exceed the default timeout of 30 seconds.
*

* Defaults to the maximum allowed timeout value of 30 seconds.
*/

u32 timeout_ms;

https://github.com/torvalds/linux/blob/master/kernel/sched/ext.c

First-Come, First-Out Scheduler

The early bird eals the
time slice

Time

Scheduler
v
Global Queue

Local Queu

CPU 1

Scheduler dance

Local Queue

EE 1

Lottery Scheduler

fire you the luchky task
who- gels the time slice?

l Enqueue task for the first time

Lottery Scheduler

Scheduling Queue

treated as a lottery bowl

Return
finished task

\
Draw randomly \ Ask for new task
from queue \

VRuntime-based Scheduler

* Tracks virtual runtime (vruntime) of tasks (time on CPU)
* Task with shortest vruntime runs first

* Use a simple priority queue

S i i

VRuntime-based Scheduler

You already run quite a
long time, lets choose
ancther task

Proportional weight-based CPU allocation: fairness

e Eachtask T has aweightw,
e The runtime assigned to each task T. is proportional to
its weight w. divided by the sum of all the runnable

tasks’ weight

t1

. Wy Wy
runtime(T;) = < dt ~ —= - (t1 — to)
to D j—o W; 2 _j—0 Wy

Andrea Righi, https://fosdem.org/2025/schedule/event/fosdem-2025-4618-level-up-your-linux-gaming-how-schedext-can-save-your-fps/

How fairness is implemented: vruntime

e Virtual runtime (vruntime)
o Charge each task a runtime proportional tow,
and inversely proportional to its weight w.
e Tasks are scheduled in order of increasing vruntime

e

Whase
Vr,(t1) = ——= - (t1 — to)

Andrea Righi, https://fosdem.org/2025/schedule/event/fosdem-2025-4618-level-up-your-linux-gaming-how-schedext-can-save-your-fps/

VTimeScheduler

VWhat else
can we do”?

Implement good
schedulers

Implemer*. |
ypioally 2O o &
i ICUUlerS

CFS was built in a simpler time Just one L3 cache

- Much smaller CPUs

- Topologies much more
homogeneous

- Cores spaced further apart,
migration cost typically high

- Power consumption and die area
wasn’t as important

- The fundamental assumptions
behind heuristics may be easier

to justify

Just two cores

Intel Xeon MP 71xx die

David Vernet, https://archives.kernel-recipes.org/wp-content/uploads/2025/01/Sched_Ext.pdf

https://github.com/sched-ext/scx

Phoronix

ARTICLES & REVIEWS NEWS ARCHIVE FORUMS PREMIUM CONTACT O CATEGORIES

Reimplementing A Linux Rust Scheduler In eBPF Shows Very Promising
Results

Written by Michael Larabel in Linux Kernel on 10 August 2024 at 03:27 PM EDT. 27 Comments

' NVIDIA software engineer Andrea Righi has implemented his "scx_rustland” Linux Rust scheduler
within eBPF for very promising performance results.

L_=d_~ | The bottleneck to the scx_rustiand Rust-written scheduler has been the overhead in
- communication between kernel and user-space. To address this, he's implemented scx_rustland
fully within eBPF and called the new creation scx_bpfland.

The scx_bpfland scheduler employs the same logic as scx_rustland but without the kernel/user-space
communication overhead. Andrea has run some benchmarks and the new bpfland code is showing very promising
results. PostgreSQL is as much as 30~39% faster, FFmpeg is several percent faster, nginx is around 8% faster, and
more.

scx_bpfland

https://www.phoronix.com/news/Linux-Rust-Sched-To-eBPF

Gaming performance

e Frames per second (fps)

o Primary metric for gaming performance
e |deal fps for smooth gameplay

o 30 fps: acceptable

o 60 fps: fluid gaming experience

o 120 fps: competitive gaming

Experiments

An erratic scheduler

https://lwn.net/SubscriberLink/1007689/922423e440f5e68a/

https://lwn.net/SubscriberLink/1007689/922423e440f5e68a/

4.3 Ensuring fair schedules LO'

All reasonable operating systems schedulers are fair —

Paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-149.pdf

One that produces sound

https://github.com/parttimenerd/loudness-scheduler

One that reacts to sound

TaskClicker

5]: 3% 5]

E.

https://github.com/Mr-Pine/taskclicker

Winner of the

Scheduler Conlest

Submit your best scheduling ideas and implementations &‘(IT 20

Interactive,

First Come , First Served
Scheduler

Interactive,

First Clicked, First Served
Scheduler

The First 1dle Game
Scheduler

TaskClicker

Failed after 32.236925450s

Syscall balance: 313. Next upgrade at 2000

& 0extra arms

a 0 eBees

Johannes Bechberger

mostlynerdless.de
Openl)DK Developer, SAP

github.com/parttimenerd/hello-ebpf

David Kiefer

mr-pine.de
Student, KIT

